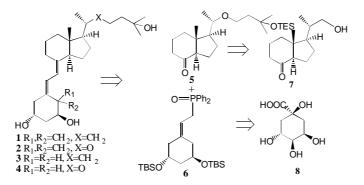
The Synthesis of 19-Nor-1α, 25-dihydroxy-22-oxo-vitamin D₃

Yong WU*¹ Mei GUAN² Pei Jie LI¹ Cheng XU¹ Xiao Chun WU¹

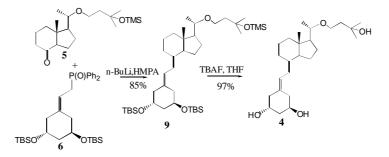

¹School of Pharmacy, West China University of Medical Sciences, Chengdu 610041 ²The First Hospital, West China University of Medical Sciences, Chengdu 610041

Abstract: 19-Nor-1 α , 25-dihydroxy-22-oxo-vitamin D₃ **4** was synthesized by the coupling of known compound **5** and the A-ring phosphine oxide **6** followed by deprotection of the hydroxy functions.

Keywords: 19-Nor-1a, 25-dihydroxy-22-oxo-vitamin D₃, device, synthesis.

Since the last decade, there has been a growing interest in the development of analogues of 1α , 25- dihydroxyvitamin D₃ **1** with low calcemic effect but increased cell differentiating ability¹. Among side chain and the A-ring modifications of **1**, the 1α , 25- dihydroxy-22-oxo-vitamin D₃ **2**² and 19-nor- 1α , 25- dihydroxyvitamin D₃ **3**³ have shown much lower calcemic effect and stronger cell differentiating ability than **1**. In this paper, we reported synthesis of 19-nor- 1α , 25-dihydroxy-22-oxo-vitamin D₃ **4** which was devised by the structural characters of **2** and **3**. The retrosynthetic pathway was outlined in scheme **1**.

Scheme1 Retrosynthetic pathway



The known intermediate **5** and A-ring phosphine oxide **6** were obtained respectively by Fall's method⁴ and DeLuca's method⁵. Coupling of the compound **5** and the A-ring phosphine oxide **6** yielded an intermediate **9**, which was deprotected to

Yong WU et al.

afford the title compound 4 as outlined in Scheme 2^6 .

Scheme 2

In summary, we have provided a concise route to prepare the compound 4. Biological evaluation of 4 is in progress.

Acknowledgment

Financial support from the National Natural Science foundation of China (No: 29972013) is gratefully acknowledged.

References and notes

- 1. R.Bouillon, W.H.Okamura and A.W.Norman, Endocr. Rev., 1995, 16, 200.
- E. Murayama, K. Miyamoto, N.Kubodera, T. Mori and I. Matsunaga. *Chem.Pharm.Bull.*, 1986, 34, 4410.
- 3. K.L.Perlman, R.R.Sicinsk, H.K.Schnoes and H.F.DeLuca, *Tetrahedron Lett.*, **1990**, *31*, 1823.
- 4. Y.Fall, Tetrahedron Lett., 1997, 38, 4909.
- K.L.Perlman, R.E.Swenson, H.E. Paaren, H.K.Schnoes and H.F.DeLuca, *Tetrahedron Lett.*, 1991,32,7663.
- 6. All new compounds were characterized by elemental analysis, IR and ¹H-NMR spectral data. Selected analytical data (¹H-NMR in CDCl₃ at 400MHz) **4**: δ , 6.29 (1H,d, J=11.3Hz), 5.82 (1H, d, J=11.3Hz), 4.11 (1H,m), 4.03 (1H,m), 3.83 (1H,dt, J=5.6,9.3Hz), 3.78 (1H, s, br) 3.49 (1H, dt J=5.6,9.3Hz), 3.42 (1H, m), 2.79 (1H, dd, J=4.3, 12.5Hz), 2.71 (1H, dd, J=3.6, 13.3Hz), 2.48 (1H,dd,J=3.2,13.3Hz), 2.22 (2H, m), 1.95 (4H,m), 1.82 (1H,m), 1.80 (1H,m) 1.30-1.75 (10H,m), 1.22 (3H,s), 1.21 (3H,s), 1.18 (3H,d, J=6.2Hz), 0.90 (1H, m), 0.52 (3H,s)ppm; [α]_D²⁰ +76.6 (*c* 2.61, CHCl₃).

Received June 8, 2000